博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
矩阵求导
阅读量:5086 次
发布时间:2019-06-13

本文共 1148 字,大约阅读时间需要 3 分钟。

1. 矩阵Y对标量x求导:

相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了

Y = [y(ij)] --> dY/dx = [dy(ji)/dx]

2. 标量y对列向量X求导:

注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量

y = f(x1,x2,..,xn) --> dy/dX = (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)'

3. 行向量Y'对列向量X求导:

注意1×M向量对N×1向量求导后是N×M矩阵。

将Y的每一列对X求偏导,将各列构成一个矩阵。

重要结论:

dX'/dX = I

d(AX)'/dX = A'

4. 列向量Y对行向量X’求导:

转化为行向量Y’对列向量X的导数,然后转置。

注意M×1向量对1×N向量求导结果为M×N矩阵。

dY/dX' = (dY'/dX)'

5. 向量积对列向量X求导运算法则:

注意与标量求导有点不同。

d(UV')/dX = (dU/dX)V' + U(dV'/dX)

d(U'V)/dX = (dU'/dX)V + (dV'/dX)U'

重要结论:

d(X'A)/dX = (dX'/dX)A + (dA/dX)X' = IA + 0X' = A

d(AX)/dX' = (d(X'A')/dX)' = (A')' = A

d(X'AX)/dX = (dX'/dX)AX + (d(AX)'/dX)X = AX + A'X

6. 矩阵Y对列向量X求导:

将Y对X的每一个分量求偏导,构成一个超向量。

注意该向量的每一个元素都是一个矩阵。

7. 矩阵积对列向量求导法则:

d(uV)/dX = (du/dX)V + u(dV/dX)

d(UV)/dX = (dU/dX)V + U(dV/dX)

重要结论:

d(X'A)/dX = (dX'/dX)A + X'(dA/dX) = IA + X'0 = A

8. 标量y对矩阵X的导数:

类似标量y对列向量X的导数,

把y对每个X的元素求偏导,不用转置。

dy/dX = [ Dy/Dx(ij) ]

重要结论:

y = U'XV = ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] = UV'

y = U'X'XU 则 dy/dX = 2XUU'

y = (XU-V)'(XU-V) 则 dy/dX = d(U'X'XU - 2V'XU + V'V)/dX = 2XUU' - 2VU' + 0 = 2(XU-V)U'

9. 矩阵Y对矩阵X的导数:

将Y的每个元素对X求导,然后排在一起形成超级矩阵。

PS:

转载于:https://www.cnblogs.com/lz-vic/p/3580982.html

你可能感兴趣的文章
Java跟Javac,package与import
查看>>
day-12 python实现简单线性回归和多元线性回归算法
查看>>
Json格式的字符串转换为正常显示的日期格式
查看>>
[转]使用 Razor 进行递归操作
查看>>
[转]Android xxx is not translated in yyy, zzz 的解决方法
查看>>
docker入门
查看>>
Android系统--输入系统(十一)Reader线程_简单处理
查看>>
监督学习模型分类 生成模型vs判别模型 概率模型vs非概率模型 参数模型vs非参数模型...
查看>>
Mobiscroll脚本破解,去除Trial和注册时间限制【转】
查看>>
实验五 Java网络编程及安全
查看>>
32位与64位 兼容编程
查看>>
iframe父子页面通信
查看>>
ambari 大数据安装利器
查看>>
java 上传图片压缩图片
查看>>
magento 自定义订单前缀或订单起始编号
查看>>
ACM_拼接数字
查看>>
计算机基础作业1
查看>>
Ubuntu 深度炼丹环境配置
查看>>
C#中集合ArrayList与Hashtable的使用
查看>>
从一个标准 url 里取出文件的扩展名
查看>>